Fallen cardinals

نویسندگان

  • Menachem Kojman
  • Saharon Shelah
چکیده

We prove that for every singular cardinal μ of cofinality ω, the complete Boolean algebra compPμ(μ) contains a complete subalgebra which is isomorphic to the collapse algebra CompCol(ω1, μ0 ). Consequently, adding a generic filter to the quotient algebra Pμ(μ) = P(μ)/[μ] collapses μ0 to א1. Another corollary is that the Baire number of the space U(μ) of all uniform ultrafilters over μ is equal to ω2. The corollaries affirm two conjectures of Balcar and Simon. The proof uses pcf theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The large cardinals between supercompact and almost-huge

I analyze the hierarchy of large cardinals between a supercompact cardinal and an almost-huge cardinal. Many of these cardinals are defined by modifying the definition of a high-jump cardinal. A high-jump cardinal is defined as the critical point of an elementary embedding j : V → M such that M is closed under sequences of length sup{ j(f)(κ) | f : κ→ κ }. Some of the other cardinals analyzed i...

متن کامل

A Generalization of the Gap Forcing Theorem

The Main Theorem of this article asserts in part that if an extension V ⊆ V satisfies the δ approximation and covering properties, then every embedding j : V → N definable in V with critical point above δ is the lift of an embedding j ↾ V : V → N definable in the ground model V . It follows that in such extensions there can be no new weakly compact cardinals, totally indescribable cardinals, st...

متن کامل

Tall , Strong , and Strongly Compact Cardinals ∗ † Arthur

We construct three models in which there are different relationships among the classes of strongly compact, strong, and non-strong tall cardinals. In the first two of these models, the strongly compact and strong cardinals coincide precisely, and every strongly compact/strong cardinal is a limit of non-strong tall cardinals. In the remaining model, the strongly compact cardinals are precisely c...

متن کامل

Strongly unfoldable cardinals made indestructible

Strongly Unfoldable Cardinals Made Indestructible by Thomas A. Johnstone Advisor: Joel David Hamkins I provide indestructibility results for weakly compact, indescribable and strongly unfoldable cardinals. In order to make these large cardinals indestructible, I assume the existence of a strongly unfoldable cardinal κ, which is a hypothesis consistent with V = L. The main result shows that any ...

متن کامل

On the indestructibility aspects of identity

We investigate the indestructibility properties of strongly compact cardinals in universes where strong compactness suffers from identity crisis. We construct an iterative poset that can be used to establish Kimchi-Magidor theorem from [22], i.e., that the first n strongly compact cardinals can be the first n measurable cardinals. As an application, we show that the first n strongly compact car...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2001